
Visualization for Software Product Lines:
A Systematic Mapping Study

Roberto E. Lopez-Herrejon
Dept. Software Engineering and IT

École de technologie supérieure, Canada

Email: roberto.lopez@etsmtl.ca

Sheny Illescas
Software System Engineering

Johannes Kepler University Linz

Austria

Email: k1257276@students.jku.at

Alexander Egyed
Software System Engineering

Johannes Kepler University Linz

Austria

Email: alexander.egyed@jku.at

Abstract—Software Product Lines (SPLs) are families of re-
lated systems whose members are distinguished by the set of
features they provide. Over two decades of research and practice
can attest to the substantial benefits of applying SPL practices
such as better customization, improved software reuse, and faster
time to market. Typical SPLs involve large number of features
which are combined to form also large numbers of products,
implemented using multiple and different types of software
artifacts. Because of the sheer amount of information and its
complexity visualization techniques have been used at different
stages of the life cycle of SPLs. In this paper we present a
systematic mapping study on this subject. Our research questions
aim to gather information regarding the techniques that have
been applied, at what stages, how they were implemented, and the
publication fora employed. Our goal is to identify common trends,
gaps, and opportunities for further research and application.

I. INTRODUCTION

Software Product Lines (SPLs) are families of related sys-

tems whose members are distinguished by the set of features

they provide [3], [30]. Variability is the capacity of software

artifacts to vary and its effective management and realization

lie at the core of successful SPL development [37]. Feature
models are tree-like structures that establish the relations

between features and have become the de facto standard for

modelling variability [17], [4]. Over the last decade, extensive

research and practice both in academia and industry attest to

the substantial benefits of applying SPL practices [30], [39],

[16]. Among the benefits are better customization, improved

software reuse, and faster time to market.

Typical SPLs have a large number of features that are

combined in complex feature relations yielding a large number

of individual software systems that must be effectively and

efficiently designed, implemented and managed. Precisely this

fact is what makes SPL-related problems suitable for the

application of visualization techniques. This application has

been explored by several researchers and has produced a

number of publications on the subject. This is precisely what

prompted us to perform a systematic mapping study to provide

an overview of the research at the intersection of these two

fields [18], [29], [5].

In contrast with a systematic literature review whose goal is

primarily to identify best practice [18], [5], [42], [20], our gen-

eral goal was to identify the quantity and the type of research

and results available, and thus highlight possible open research

problems and opportunities, for both visualization and SPL

communities. More concretely we wanted to identify at what

stages of the SPL development life cycle have visualization

techniques been used, which ones, and what tools they use

for their implementation. And finally, which are the fora where

the research work was published.

Our study found 32 publications that revealed an ongoing

interest in applying visualization techniques to SPL problems.

Salient among the findings is the pre-eminent use of visualiza-

tion techniques for capturing and designing SPLs, as well for

providing support during their configuration. We hope that this

mapping study not only serves to highlight the main research

topics at the intersection of visualization and SPLs but that

it also serves to encourage researchers to pursue work at the

intersection of both areas.

The paper is structured as follows. Section II provides the

basic background on SPLS. Section III presents the process

we followed for our systematic mapping study. It details the

research questions addressed, how the search was performed,

the classification scheme used, and how the data was extracted

and analysed. Section IV presents the results we obtained for

each research question. Section V presents our analysis of the

results found along with open questions and avenues worth

of further investigation. Section VI concisely describes the

existing review studies and surveys of SPLs and visualization.

Section VII summarizes the conclusions of our study and

future work.

II. SOFTWARE PRODUCT LINES OVERVIEW

As mentioned before, Software Product Lines (SPLs) are

families of related systems whose members are distinguished

by the set of features they provide [3], [30]. There is an

extensive body of research that attests to the benefits of SPL

practices and that has proposed multiple approaches, methods,

and techniques for SPL development (e.g. [30], [14], [13], [6]).

In this section we present the basic concepts of SPLs to set

up the context of the mapping study.

A. Feature Models

Recall that a core concept in SPLs is variability which

refers to the capacity of software artifacts to vary [37]. The

2016 IEEE Working Conference on Software Visualization

978-1-5090-3850-3/16 $31.00 © 2016 IEEE

DOI 10.1109/VISSOFT.2016.11

26

Fig. 1. Feature models graphical notation.

software products that constitute a SPL are characterized

by the different combinations of features they have. These

combinations are captured in variability models for which

there are different alternatives [7]; however, feature models

have become a de facto standard [17]. In this type of model,

features are depicted as labelled boxes and their relationships

as lines, collectively forming a tree-like structure. The typical

graphical notation for feature models is shown in Figure 1.

A feature can be classified as mandatory which is selected

whenever its parent feature is also selected (e.g. feature B in

Figure 1(a)), and optional which may or may not be part of a

program whenever its parent feature is selected (e.g. feature B
in Figure 1(b)). Features can also be grouped into alternative
groups and or groups. In alternative groups if the parent feature

of the group is selected, exactly one feature from the group

must be selected. For example, Figure 1(c) illustrates that if

feature P is selected, then one of the group features C1, C2
or C3 must be selected. In or groups if the parent feature

of the group is selected, then one or more features from the

group can be selected. For example, Figure 1(d) shows that

if feature P is selected, one of more of features C1, C2 or

C3 must be selected. In addition to hierarchical parent-child

relations, features can also relate across different branches of

the feature model with Cross-Tree Constraints (CTCs) [4].

The typical examples of this kind of relations are: i) requires
relation whereby if a feature A is selected a feature B must also

be selected, and ii) excludes relation whereby if a feature A is

selected then feature B must not be selected and vice versa. In

a feature model, these latter relations are commonly depicted

with dotted single-arrow lines and dotted double-arrow lines

respectively, see Figure 1(e).

B. Software Product Line Engineering Framework

As described before, there are many approaches for SPL

development (e.g. [30], [14], [13], [6]). For our study, we

selected the SPL engineering framework proposed by Pohl et

al.’s [30], shown in Figure 2. This framework is well-known

within SPL research community and has been used to highlight

not only some of the open questions and challenges in the field

of SPLs [25], but we also have used it for other systematic

mapping studies [22], [23]. This framework defines two main

SPL activities as follows [30]:

Definition 1: Domain Engineering (DE) is the process of

software product line engineering in which the commonality

and the variability of the product line are defined and realised.

Definition 2: Application Engineering (AD) is the process

of software product line engineering in which the applications

of the product line are built by reusing domain artefacts and

exploiting the product line variability.

Each of the two main activities is divided in four sub-

processes defined as [30]:

• Domain Requirements Engineering (DRE) is the sub-

process of DE where the common and variable require-

ments of the product line are defined, documented in

reusable requirements artifacts, and continuously man-

aged.

• Domain Design (DD) is the sub-process of DE where a

reference architecture for the entire software product line

is developed.

• Domain Realisation (DR) is the sub-process of DE where

the set of reusable components and interfaces of the

product line is developed.

• Domain Testing (DT) is the sub-process of DE where

evidence of defects in domain artifacts is uncovered and

where reusable test artifacts for application testing are

created.

• Application Requirements Engineering (ARE) is the sub-

process of AE dealing with the elicitation of stakeholder

requirements, the creation of the application requirements

specification, and the management of application require-

ments.

• Application Design (AD) is the sub-process of AE where

the reference architecture is specialised into the applica-

tion architecture.

• Application Realisation (AR) is the sub-process of AE

where a single application is realised according to the

application architecture by reusing domain realisation

artifacts.

• Application Testing (AT) is the sub-process of AE where

domain test artifacts are reused to uncover evidence of

defects in an application.

We regard each sub-process of DE and AE as a life cycle
stage of SPLs and we use these terms for the classification

of the visualization techniques as described in Section III-D.

We made this decision because DE and AE are the two

common activities in all the SPL approaches (hence applicable

to any SPL approach) and because they have a clear distinction

between their goals as stated in their definitions. In addition

to the eight stages of this framework, we considered one more

stage to cover all maintenance and evolution issues of SPLs

which we defined as follows:

• Maintenance and Evolution (ME) refers to the mainte-

nance and evolution of all the artifacts developed across

the entire life cycle of SPLs. Reverse engineering artifacts

or bug fixing are examples of activities that fall in this

category.

27

Fig. 2. Pohl et al.’s SPL Framework, Figure 2-1 from [30].

III. SYSTEMATIC MAPPING STUDY

Evidence-Based Software Engineering (EBSE) has as its

driving goal ”to provide the means by which current best
evidence from research can be integrated with practical ex-
perience and human values in the decision making process
regarding the development and maintenance of software” [19].

One of the most common approaches advocated by EBSE are

systematic mapping studies that aim to provide an overview

of the results available within an area by categorizing them

along criteria such as type, forum, frequency, etc. [29].

In this paper we perform our systematic mapping study

following the protocol proposed by Petersen et al. [29], whose

main stages we present in Figure 3. Next we describe each of

the processes and how they were performed for our mapping

study. In Section IV we present the results obtained, and in

Section V their analysis.

A. Definition of Research Questions

Recall that the main goal underlying our work is to provide

an overview of research that applies visualization techniques

to tackle SPL problems. Therefore, our driving motivation is

to gather and summarize evidence of research that lies at the

intersection of the research fields of software visualization

and SPLs. Our mapping study then focuses on the following

research questions:

• RQ1. In what stages of the SPL life cycle have
visualization techniques been used?
Rationale: Visualization techniques have been applied at

many stages of software development, so our interest is

finding out where they have been employed throughout

the entire life cycle of SPLs [30] as explained in Sec-

tion II-B.

• RQ2. What visualization techniques have been used?
Rationale: There are a large number of visualization

techniques available in literature. Our goal here is cat-

aloguing their use for SPL problems and analyse if there

are common trends in their application.

• RQ3. What visualization tools have been used?
Rationale: There exist many tools, libraries, APIs, etc.

that support multiple visualization techniques for different

platforms. The goal of this question is to identify the tech-

nical support that has been exploited in SPL problems.

• RQ4. What are the publication fora used?
Rationale: Software visualization and SPL research ap-

pears in many conferences, journals, workshops, etc. in a

large array of research communities. Hence, identifying

the publication fora may be beneficial for researchers

wanting to keep up to date on development on the subject

as well as to seek collaborations or to publish the results

of their research.

B. Conduct Search for Primary Sources.

In this step of the systematic mapping the strings of terms

to be used for the search are defined. Because of work focuses

on the intersection of two fields, SPLs and visualization, we

used to sets of terms, one for each field. Table I shows the

list of all search terms we used1. Regarding the SPL terms,

they come from our two previous mapping studies [22], [23]

and are based on the terms collected from twelve systematic

mapping and literature review studies in SPLs [2], [32], [12],

[8], [11], [9], [15], [21], [26], [24], [10], [13]. It is important

to remark that none of these mapping studies are related to

software visualization as will be detailed in Section VI. For

gathering the terms for visualization we selected them from

seven surveys and studies in the area of visualization [27],

[36], [31], [34], [28], [35], [1]. Again, none of these works

relate to SPLs.

We carried out the search process in two stages. First, we

used the search engines of publishing companies and orga-

1Alternative term spellings or hyphenation are not shown in the table and
were found not to be relevant for our searches.

28

Fig. 3. Systematic Mapping Study Process [29].

SPL terms: application engineering, commonality, core asset, domain
analysis, domain engineering, feature analysis, feature based, feature
diagram, feature model, feature modeling, feature oriented, highly-
configurable system, process family, product family, product line,
product line engineering, software family, software product family,
software product line, software reuse, SPL, variability, variability
analysis, variability management, variability modeling, variability-
intensive system, variant, variation, variation point

Visualization terms: visual, visualization, visualizing, information
visualization, software visualization

TABLE I
SUMMARY OF SPL AND VISUALIZATION SEARCH TERMS.

nizations, namely ScienceDirect, IEEExplore, ACM Digital

Libray, and SpringerLink. These are the common publishing

outlets that contain journals, conferences, and workshops in

both SPLs and software visualization. At the second stage, we

performed so-called snowballing readings which refer to those

papers which are either cited or cite the papers obtained in the

first search stage [5], [41]. We manually performed the second

stage following the citation links provided by the publishing

companies and also with Google Scholar.

The queries we performed took all the combinations of

one term from the visualization list and one or more terms

of the SPL terms depending on the querying functionality of

each search engine. The searches considered the title, abstract,

and keywords of the papers, and when supported by the

search engine also their contents. As an example consider the

following a query fragment used in the IEEExplore engine2:

("visualization") AND ("software
product line" OR "feature model" OR
"variability management" OR "product
line engineering")

C. Screening of Papers for Inclusion and Exclusion

During the screening process we looked for the search terms

in the title, abstract and keywords and whenever necessary

at the introduction or at other places of the paper. The sole

criteria for inclusion in our mapping study was that a clear

application of visualization techniques to SPL problems was

described.

2The search queries had to be broken down into smaller queries (as shown
in the example) because of the search limitations of some search engines.
We made sure however that we considered all possible combinations in the
cartesian product of the visualization and SPL terms.

The criteria to exclude papers in our study was: i) papers

which did not apply any visualization techniques to SPLs3, ii)
papers not written in English, iii) vision or position papers

that had no implementation to back them up, iv) graduate

or undergraduate dissertations and thesis, and v) non peer-

reviewed documents such as technical reports.

The decision on whether or not to include a paper was

most of the times straightforward, in other words, that at least

one visualization term was found and a clear connection to

SPLs could be easily drawn. While performing the searches we

found out for a couple of approaches, that there were papers

that presented fundamentally the same approach (e.g. firstly

published as a part of research paper and secondly published

as a tool paper). For such cases, we included the paper that was

published first and excluded the other related ones. However,

we kept those subsequent papers whenever they contributed

new material for the approach in question, for example an

application to a new problem domain.

D. Keywording using Abstracts — Classification Scheme

We classified our articles into four dimensions aligned with

each research question that our systematic mapping study

addresses.

1) SPL life cycle stage classification: For this classification

dimension we used the eight stages derived from the Pohl

et al.’s framework [30], plus the maintenance and evolution

(ME) stage as described in Section II-B. We deviate from

the standard classification procedure whereby the classifi-

cation schemes follow from the abstract keywords because

our driving goal is to bring to the attention of researchers

and practitioners of SPL and software visualization commu-

nities the research opportunities at the intersection of both

disciplines. Hence, we decided on using a framework and

terminology that is already familiar within the SPL community

and readily accessible for software visualization researchers.

We should remark that for this dimension a primary source

can be classified in more than one category.

2) Visualization techniques classification: For this classi-

fication we considered each different visualization technique

found in our primary sources as a category following standard

terminology from the field [38], [40]. We should also remark

3We should mention that we included papers that apply visualization tech-
niques even though the application was not their main focus or contribution.

29

that for this dimension a primary source can also be classified

in more than one category.

3) Visualization tools classification: For this classification

we considered each different tool, library, framework, or

special-purpose language mentioned in the primary sources.

We included an extra category ad hoc for those cases where

there is no explicit mention of the implementation details

and the tool support could not be traced through the paper

references or authors’ websites.

4) Type of publication fora classification: The classification

of publication fora is straightforward because we used the

name of the journal, conference or workshop where the

publication appeared.

E. Data Extraction and Mapping Study

For gathering the data we proceeded with the following

steps which gave us the confidence that our data was con-

sistently classified:

1) We created a guideline document defining each of the

classification terms and an Excel spreadsheet to collect

the classification information. The spreadsheet contained

the following data fields: i) SPL life cycle stage, ii)
rationale for the categorization, iii) visualization tech-

niques employed, iv) rationale for the classification,

v) visualization tools employed, vi) rationale for the

classification, and vii) a general field for any remarks.

2) We formed two groups to carry out the classification

task independently.

3) We held a meeting to pilot the classification terms. In

this meeting each group presented its classification of

a group of five selected primary sources. Any discrep-

ancies were discussed and analyzed to homogenize the

classification criteria.

4) The two teams performed the classification of all pri-

mary sources independently.

5) We held a second meeting where the classification for

every single paper for each criterion was discussed until

a consensus was reached.

The effort to gather the data varied between papers but for

the majority it was a simple task to find all the classification

information required. The most time-consuming part was in

some cases finding out the implementation tools employed.

IV. RESULTS

The search using the four search engines mentioned above

yielded 391 hits for potential papers to consider as primary

sources. We performed a more detailed reading of the title,

abstract and keywords to gauge at the relevance of the papers

found. As result we obtained 32 relevant papers. The most

common reason for exclusion was that those papers did not

apply visualization techniques to SPLs, for example some

simply mention visualization as part of future work but provide

no actual application. The exclusion of each paper was double-

checked to make sure we did not eliminate any relevant

primary source.

Fig. 4. Publications per year

We did snowballing on those papers which produced 9

new relevant papers. Then we performed a more exhaustive

screening on the 41 papers which also considered more

detailed points of the exclusion criteria and reading several

sections of the papers. This detailed screening eliminated 6

papers, from the original 32, and 3 snowballing papers. At the

end, our mapping study considers 32 primary sources, listed in

the Appendix in the order they were found, which are shown

sorted in a histogram by publication year in Figure 4. This

figure shows a spike in the number of publications in 2008,

and since then a constant and increasing interest in the topic.

In the following subsections we present the results obtained

for each of our research questions, while their collective

analysis is presented in Section V.

A. RQ1. SPL life cycle stages

Table II shows the use of visualization techniques per life

cycle which are summarized in Figure 5. They show that

visualization techniques have been used pre-eminently for the

Domain Engineering activities of SPLs, that is, those that

involve the entire product line as explained in Section II. More

concretely, our study found for the requirements engineering

(DRE) and the design (DD) stages 20 and 21 references

respectively. We should point out that it is at these stages when

feature models are defined and commonly the requirements of

the features are additionally reified as attributes of the feature

models. This fact we believe explains this first finding.

For the stages where the requirements for each product are

captured (ARE) and analyzed (AD), we respectively found 15

and 13 primary sources. Here again there is a common reliance

on feature models to guide the product configuration process

– where the engineer selects the desired combinations of

features, analyzing different trade-offs. As before, we believe

that the use of feature models at this stage also explains this

finding.

For the stage where the product line is realized at the domain

level (DR) we found 11 primary sources. At this stage, our

study found that colors are used to describe what software

artifacfts or their pieces belong to particular features. For

instance, in [S28] the authors use colors to annotate UML-

based models and in [S29] the authors follow the same idea

but applied to source code.

30

TABLE II
PRIMARY SOURCES AND LIFE CYCLE STAGE

Stage Primary Sources Identifiers
DRE S3, S5, S9, S13, S14, S15, S17, S19, S20, S21, S22, S23,

S24, S25, S26, S27, S28, S29, S30, S32
DD S3, S5, S9, S10, S13, S14, S15, S17, S19, S20, S21, S22,

S23, S24, S25, S26, S27, S28, S29, S30, S32
DR S4, S7, S9, S10, S20, S21, S23, S28, S29, S30, S31
DT S6, S11

ARE S2, S6, S8, S9, S12, S13, S15, S16, S17, S18, S20, S24,
S26, S28, S32

AD S2, S9, S12, S13, S15, S16, S17, S18, S20, S24, S26,
S28, S32

AR S9, S20, S28
AT None
ME S1, S6, S14, S31

Fig. 5. Publications per stage

Our study found 4 primary sources for the maintenance

and evolution stage (ME). The authors of [S1] use a tree to

depict the evolution of products across time, while the authors

of [S31] use bars to depict the evolution of features also across

time. The authors of [S6] trace the evolution of bugs across

product evolution. Support for maintenance tasks concerning

the feature models is addressed in [S14].

Our study found three primary sources for the artifact

realization (AR) stage. All of them use different notions of

fragments of models (e.g. features, concerns, and deltas) which

are configured, analyzed and composed. For this stage they

primarily rely on colors to distinguish the fragments which

are visualized as models.

We found that despite the extensive research on SPL testing,

described in Section VI, only two primary sources exploit

visualization techniques for this stage. In [S11] authors employ

basic techniques such as tree maps and bubble charts to depict

covering arrays. In [S6] authors visualize bug evolution to

help with SPL testing tasks. Our study found no visualization

techniques used for testing the AT stage.

B. RQ2. Visualization techniques

Table III summarizes the use of visualization techniques.

Considering the number of primary sources that visualize

different aspects of feature models, it is not a surprise that

the most frequent technique was visualization of trees with 11

papers. This was followed by general graphs with 6 papers,

and the more specialized form of graphs that constitute concept

TABLE III
VISUALIZATION TECHNIQUES

Technique Primary Sources Identifiers
Trees S1, S2, S3, S4, S6, S9, S16, S17, S18,

S24, S32
Graphs (nodes and edges) S7, S12, S20, S21, S26, S30
Concept lattices S13, S25
Bar diagrams S19, S22
Colored code / model elements S28, S29
Feature histograms S4
Tables/ Matrices S5
Bubble chart S8
Levelized structure map S10
Bubble map S11
Heat map S11
Tree map S11
Grid S11
Feature blueprints S14
Feature relation graphs S15
Component model annotations S23
Flow maps S26
3D cone trees S27
Feature survival chart S31
3D color spheres S32

lattices. We describe next some of the visualization techniques

found.

Feature blueprints are feature models where the size of the

feature box depends on the number of internal and external

constraints found in a feature and use colors to distinguish op-

tional from mandatory features [S14]. Feature relation graphs

depict features and their relations as colored concentric circles

whose color, width and size depends on the properties of the

relations [S15]. Feature survival charts display one bar for each

feature and use colors to describe its evolution, for example

when a feature is in the scope of a SPL and when it was

deprecated [S31].

C. RQ3. Visualization tools

Table IV summarizes our findings for visualization tools.

It is noticeable that 15 primary sources did not provide

clear description of the tools or APIs they used for the

implementation. By judging from the screenshots provided we

speculate that the majority relied on the basic graphics API

provided by the Java SDK. The second most common tool was

the Eclipse Modeling Framework (EMF)4 in combination with

Graphical Editing Framework (GEF)5 which provide a solid

framework infrastructure for creating, among other things,

domain specific languages for which visual representations

could be devised. The third place was Prefuse6, a visualization

toolkit that has been superseded by D3.js7. Graphviz8 is a

software visualization tool specialized on graphs. CCVisu is

a visual clustering tool [S7]. Google charts provides support

for visualizing data in websites9. ConExp is a tool for for-

4https://eclipse.org/modeling/emf/
5https://eclipse.org/gef/
6http://prefuse.org/
7https://d3js.org/
8http://www.graphviz.org/
9https://developers.google.com/chart/

31

TABLE IV
VISUALIZATION TOOLS

Tool Primary Sources Identifiers
Adhoc S2, S3, S4, S5, S6, S10, S17, S19, S21, S22, S23,

S25, S27, S31, S32
Eclipse EMF-GEF S9, S12, S16, S18, S20, S28, S29, S30
Prefuse S24, S26
Graphviz S1
CCVisu S7
Google charts S8
D3.js S11
ConExp S13
Moose S14
Processing 2.0 S15

mal concept analysis [S13]. Moose is a software analysis

platform [S14]. Processing10 is a software sketchbook and

language for visual arts.

D. RQ4. Publication fora

Table V summarizes the publication fora sorted by type

of publication (e.g. conference, journal, or workshop) and

their frequency. It should not come as a surprise that the two

leading conferences in SPLs and software visualization are the

most frequent publication outlets with 6 and 3 publications

respectively. These two conferences are followed by ICSE,

SEAA, and WCRE with two publications each. The remaining

conferences are in the general area of software engineering

with the exception of ISVC and SoftVis (now merged into

VISSOFT) whose focus is on visualization. From the journal

publications [S25] and [S26] have visualization as the main

focus of the article, whereas in [S24] it is a secondary concern.

From the workshop publications, the most frequent venue was

VISPLE, a specialized workshop that at intersection of SPL

and visualization that ran for three occasions as an associated

workshop at SPLC conference.

V. ANALYSIS

In this section we analyze the core findings revealed by our

systematic mapping study. We shortly discuss open questions

and potential areas for further research.

A. Pre-eminence of visualization of feature models

Our study revealed that feature models were the most com-

mon artifact visualized. Consequently those life cycle stages

that commonly use feature models were the most frequently

found by out study. Namely, domain requirements engineer-

ing (DRE) and design (DD), and application requirements

engineering (ARE) and design (DD). Because of the same

reason, the most common technique used for visualization

were trees and graphs (including concept lattices). Our study

also highlighted that visualization for some life cycle stages

has been barely employed. For instance, from the extensive

ongoing work on SPL testing, see Section VI, only two

approaches have relied on any form of visualization technique.

We argue these life stages are worthy avenues for further

research and application of visualization techniques.

10https://processing.org/

B. Use of basic tools and techniques

An important finding of our study was that most approaches

do not tap on the wealth of tooling and visualization tech-

niques that are currently available. Instead, they use either ad

hoc techniques or are based on development frameworks of

ecosystems like Eclipse. Though useful and accessible entry

points, they are not geared for information visualization and

lack, for instance, features like more complex interactions or

layout possibilities.

A common trend we found was the use of colors to

distinguish the artifacts that belong to each feature, for instance

coloring the background of pieces of source code (e.g.[S29])

or models (e.g. [S28]). However, relying on colors presents

an inherent scalability problem for the common cases where

SPLs have hundreds, if not thousands, of features. Our study

also revealed that even though features are modeled and imple-

mented with different artifacts throughout the SPL life cycle,

and hence represent multivariate data, none of the primary

sources exploits this fact for visualization purposes. We argue

that handling scalability and multivariate data visualization are

two open challenges with a high impact potential in the SPL

community.

VI. RELATED WORK

In this section we briefly summarize the surveys and studies

carried out in either SPLs or in information visualization.

SPL surveys. There has been many recent systematic

mapping studies and systematic literature reviews in SPLs.

Here we summarize the studied areas:

• SPL adoption [12]. This work identified four adoption

strategies and 23 barriers that can hinder SPL adoption

in industrial projects.

• Agile methods [9]. This study found that most of the

applications of agile methods follow XP or Scrum and

identified SPL practices that can be exploited by Agile

techniques.

• Requirements engineering [2]. This study found that

the application of requirements engineering techniques

for SPL was still not mature and advocate that more

empirical studies should be performed to improve the

rigor, credibility, and validity of the proposed approaches.

• Service orientation [26], [24]. Among their findings is

that there are still many research avenues to purse and

that most of the work is on performance and availability

whereas other quality attributes are mostly disregarded

and are not in industrial settings.

• SPL testing [11], [8], [10], [22]. These studies provide a

taxonomy and classify over more than a hundred sources

along several dimensions. Among their findings is the

pre-eminence of combinatorial approaches for selecting

representative products to test and that there is still a

great lack of empirical industrial applications.

• SPL evolution [21]. They made an assessment of the

maturity level of techniques to migrate individual systems

or groups of software variants into SPLs.

32

TABLE V
PUBLICATION FORA

Acronym Primary Sources Identifiers Publication Name
Conference Publications

SPLC S1, S3, S6, S8, S13, S16 International Conference Software Product Lines
VISSOFT S11, S14, S15 IEEE Working Conference on Software Visualization

ICSE S4, S7 International Conference on Software Engineering
SEAA S12, S21 Euromicro Conference on Software Engineering and Advanced Applications
WCRE S19, S23 Working Conference on Reverse Engineering
SoftVis S2 ACM Symposium on Software Visualization

FSE S5 Foundations of Software Engineering
Modularity S9 International Conference on Modularity

IC3 S10 International Conference on Contemporary Computing
ASE S20 International Conference on Automated Software Engineering

COMPSAC S18 International Conference on Computer Software and Applications
RE S31 IEEE International Requirements Engineering Conference

ISVC S32 International Symposium Advances in Visual Computing
Journal Publications

IST S24 Information and Software Technology
Proceedia S25 Procedia Technology

ISTTT S26 International Journal on Software Tools for Technology Transfer
Workshop Publications

VISPLE S27, S28, S29, S30 Workshop on Visualisation in Software Product Line Engineering
REV S17 International Workshop on Requirements Engineering Visualization

PLEASE S22 International Workshop on Product Line Approaches in Software Engineering

• Variability management [6], [13]. Among their collec-

tive findings are that a large majority of the reported

approaches have not been sufficiently evaluated using

scientifically rigorous methods (e.g. following [42]) and

that software quality attributes have not received much

attention.

• Product configuration support [32], [15]. These studies

performed a combination of questionnaire and tool survey

to identify the requirements for tools to support configu-

ration.

• Search-Based Software Engineering (SBSE) [23]. This

study analyzed what and how search-based techniques –

including metaheuristic search based optimization tech-

niques and classical operations research techniques – have

been employed for SPLs problems. The study found the

pre-eminence of metaheuristic approaches, e.g. genetic

algorithms, applied to SPL testing.

Visualization surveys. Schots et al. performed an extensive

review of visualization for software reuse [35]. They found

four of the primary sources that our study identified even

though SPLs are a form of systematic software reuse.

Seriai et al. performed a systematic mapping study on

the validation of visualization tools [36]. Their main finding

was that despite the increasing research and application of

visualization techniques their evaluation lacks rigour. Novais

et al. carried out a systematic mapping study in software

evolution visualization [27]. Similarly to Seriai et al., they

found a lack of empirical studies that for instance validate the

usefulness of the proposed techniques. Prado et al. performed a

systematic mapping study of visualization tools and techniques

for software comprehension [31]. Their study corroborates the

lack of robust empirical evaluation, and found that most ap-

proaches use bi-dimensional visualizations and do not address

user interactions.

Abuzaid and Scott performed a systematic literature review

on visualization of software quality metrics which describe

the different techniques used to facilitate comprehension of

common metrics like McCabe’s complexiy or lines of code [1].

Paredes et al. carried out a systematic mapping study of the

use of information visualization for software development

following Agile approaches [28]. They found visualization

used for designing, developing, communication and keeping

track of progress.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a systematic mapping on the

use of visualization for SPL development which found 32

primary sources. Our study revealed the pre-eminent use of

visualization techniques for SPL development activities that

involve feature models, a de facto standard for describing the

combinations of features in the products of a SPL. We also

found that most primary sources rely on basic visualization

techniques and tools, e.g. ad hoc or based in Eclipse tools,

that barely exploit the wealth of techniques available in the

software and information visualization communities. We hope

our work can entice researchers in SPL and visualization

communities to pursue further work in the subject. As part

of our future work, we want to take a closer look on the in-

teraction capabilities on the identified approaches and analyze

the empirical foundations on which they rely upon.

VIII. ACKNOWLEDGEMENTS

This research was funded by the Austrian Science Fund

(FWF) projects P25289-N15 and P25513-N15.

REFERENCES

[1] D. Abuzaid and S. Titang. The visualization of software quality metrics.
a systematic literature review. Bachelor thesis. University of Gothenburg.
Chalmers University of Technology, 2014.

[2] V. Alves, N. Niu, C. F. Alves, and G. Valença. Requirements engineering
for software product lines: A systematic literature review. Information &
Software Technology, 52(8):806–820, 2010.

33

[3] D. S. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise
refinement. IEEE Trans. Software Eng., 30(6):355–371, 2004.

[4] D. Benavides, S. Segura, and A. R. Cortés. Automated analysis of feature
models 20 years later: A literature review. Inf. Syst., 35(6):615–636, 2010.

[5] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham. Using Mapping
Studies in Software Engineering. In Proceedings of PPIG 2008, pages
195–204. Lancaster University, 2008.

[6] L. Chen and M. A. Babar. A systematic review of evaluation of variability
management approaches in software product lines. Inform. & Software
Tech., 53(4):344–362, 2011.

[7] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski.
Cool features and tough decisions: a comparison of variability modeling
approaches. In U. W. Eisenecker, S. Apel, and S. Gnesi, editors, VaMoS,
pages 173–182. ACM, 2012.

[8] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor, E. S.
de Almeida, and S. R. de Lemos Meira. A systematic mapping study
of software product lines testing. Information & Software Technology,
53(5):407–423, 2011.

[9] I. F. da Silva, P. A. da Mota Silveira Neto, P. O’Leary, E. S. de Almeida,
and S. R. de Lemos Meira. Agile software product lines: a systematic
mapping study. Softw., Pract. Exper., 41(8):899–920, 2011.

[10] I. do Carmo Machado, J. D. McGregor, Y. C. Cavalcanti, and E. S.
de Almeida. On strategies for testing software product lines: A systematic
literature review. Information and Software Technology, 56(10):1183 –
1199, 2014.

[11] E. Engström and P. Runeson. Software product line testing - a systematic
mapping study. Inform. & Software Tech., 53(1):2–13, 2011.

[12] J. Ferreira Bastos, P. Anselmo da Mota Silveira Neto, E. Santana de
Almeida, and S. Romero de Lemos Meira. Adopting software product
lines: A systematic mapping study. In Evaluation Assessment in Software
Engineering (EASE 2011), 15th Annual Conference on, pages 11–20,
April 2011.

[13] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou. Vari-
ability in software systems - a systematic literature review. IEEE Trans.
Software Eng., 40(3):282–306, 2014.

[14] R. Heradio, H. Perez-Morago, D. Fernández-Amorós, F. J. Cabrerizo,
and E. Herrera-Viedma. A bibliometric analysis of 20 years of research
on software product lines. Information & Software Technology, 72:1–15,
2016.

[15] G. Holl, P. Grünbacher, and R. Rabiser. A systematic review and an
expert survey on capabilities supporting multi product lines. Inform. &
Software Tech., 54(8):828–852, 2012.

[16] T. Käkölä and J. C. Dueñas, editors. Software Product Lines - Research
Issues in Engineering and Management. Springer, 2006.

[17] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University, 1990.

[18] B. Kitchenham and S. Charters. Guidelines for performing systematic
literature reviews in software engineering. version 2.3. EBSE Technical
Report EBSE-2007-01, Software Engineering Group, School of Computer
Science and Mathematics, Keele University, UK and Department of
Computer Science, University of Durham, UK, 2007.

[19] B. Kitchenham, T. Dybaa, and M. Jorgensen. Evidence-based software
engineering. In ICSE, pages 273–281. IEEE CS Press, 2004.

[20] B. A. Kitchenham, D. Budgen, and O. P. Brereton. Using mapping
studies as the basis for further research - a participant-observer case study.
Information & Software Technology, 53(6):638–651, 2011.

[21] M. A. Laguna and Y. Crespo. A systematic mapping study on software
product line evolution: From legacy system reengineering to product line
refactoring. Sci. Comput. Program., 78(8):1010–1034, 2013.

[22] R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and A. Egyed. A
first systematic mapping study on combinatorial interaction testing for
software product lines. In Eighth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2015 Workshops,
Graz, Austria, April 13-17, 2015, pages 1–10. IEEE Computer Society,
2015.

[23] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed. A systematic
mapping study of search-based software engineering for software product
lines. Journal of Information and Software Technology, 2015.

[24] S. Mahdavi-Hezavehi, M. Galster, and P. Avgeriou. Variability in quality
attributes of service-based software systems: A systematic literature
review. Information & Software Technology, 55(2):320–343, 2013.

[25] A. Metzger and K. Pohl. Software product line engineering and
variability management: achievements and challenges. In J. D. Herbsleb
and M. B. Dwyer, editors, FOSE, pages 70–84. ACM, 2014.

[26] B. Mohabbati, M. Asadi, D. Gasevic, M. Hatala, and H. A. Müller.
Combining service-orientation and software product line engineering:
A systematic mapping study. Information & Software Technology,
55(11):1845–1859, 2013.

[27] R. L. Novais, A. Torres, T. S. Mendes, M. G. Mendonça, and N. Za-
zworka. Software evolution visualization: A systematic mapping study.
Information & Software Technology, 55(11):1860–1883, 2013.

[28] J. Paredes, C. Anslow, and F. Maurer. Information visualization for agile
software development. In Sahraoui et al. [33], pages 157–166.

[29] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic mapping
studies in software engineering. In EASE, pages 68–77. British Computer
Society, 2008.

[30] K. Pohl, G. Bockle, and F. J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[31] M. P. Prado, A. M. R. Vincenzi, F. A. A. de M. N. Soares, F. Cesar,
G. P. de Paula, H. A. D. do Nascimento, J. C. Silva, J. L. de Oliveira,
L. C. Lima, and T. Fernandes. Characterization of techniques and tools of
visualization applied to software comprehension: A systematic mapping.
In International Conference on Software Engineering Advances (ICSEA),
2013.

[32] R. Rabiser, P. Grünbacher, and D. Dhungana. Requirements for product
derivation support: Results from a systematic literature review and an
expert survey. Inform. & Software Tech., 52(3):324–346, 2010.

[33] H. A. Sahraoui, A. Zaidman, and B. Sharif, editors. Second IEEE
Working Conference on Software Visualization, VISSOFT 2014, Victoria,
BC, Canada, September 29-30, 2014. IEEE Computer Society, 2014.

[34] M. Schots. On the use of visualization for supporting software reuse. In
P. Jalote, L. C. Briand, and A. van der Hoek, editors, 36th International
Conference on Software Engineering, ICSE ’14, Companion Proceedings,
Hyderabad, India, May 31 - June 07, 2014, pages 694–697. ACM, 2014.

[35] M. Schots, R. Vasconcelos, and C. Werner. A quasi-systematic review
on software visualization approaches for software reuse. Technical report,
Federal University of Rio de Janeiro, 2014.

[36] A. Seriai, O. Benomar, B. Cerat, and H. A. Sahraoui. Validation of
software visualization tools: A systematic mapping study. In Sahraoui
et al. [33], pages 60–69.

[37] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of variability
realization techniques. Softw., Pract. Exper., 35(8):705–754, 2005.

[38] A. Telea. Data visualization - principles and practice. A K Peters,
second edition, 20015.

[39] F. J. van d. Linden, K. Schmid, and E. Rommes. Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering.
Springer, 2007.

[40] M. O. Ward, G. G. Grinstein, and D. A. Keim. Interactive Data
Visualization - Foundations, Techniques, and Applications. A K Peters,
2010.

[41] C. Wohlin. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In M. J. Shepperd, T. Hall,
and I. Myrtveit, editors, EASE, page 38. ACM, 2014.

[42] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell.
Experimentation in Software Engineering. Springer, 2012.

APPENDIX

PRIMARY SOURCES LIST

[S1] Tetsuya Kanda, Takashi Ishio, and Katsuro Inoue. Extraction of product
evolution tree from source code of product variants. In Proceedings of
the 17th International Software Product Line Conference, SPLC ’13,
pages 141–150, New York, NY, USA, 2013. ACM.

[S2] Daren Nestor, Steffen Thiel, Goetz Botterweck, Ciarán Cawley, and
Patrick Healy. Applying visualisation techniques in software product
lines. In Proceedings of the 4th ACM Symposium on Software
Visualization, SoftVis ’08, pages 175–184, New York, NY, USA, 2008.
ACM.

[S3] Alessio Ferrari, Giorgio O. Spagnolo, Stefania Gnesi, and Felice
Dell’Orletta. Cmt and fde: Tools to bridge the gap between natural
language documents and feature diagrams. In Proceedings of the 19th
International Conference on Software Product Line, SPLC ’15, pages
402–410, New York, NY, USA, 2015. ACM.

34

[S4] Michael Stengel, Mathias Frisch, Sven Apel, Janet Feigenspan, Chris-
tian Kästner, and Raimund Dachselt. View infinity: A zoomable
interface for feature-oriented software development. In Proceedings
of the 33rd International Conference on Software Engineering, ICSE
’11, pages 1031–1033, New York, NY, USA, 2011. ACM.

[S5] Sana Ben Nasr, Guillaume Bécan, Mathieu Acher, João Bosco Fer-
reira Filho, Benoit Baudry, Nicolas Sannier, and Jean-Marc Davril.
Matrixminer: A red pill to architect informal product descriptions in the
matrix. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pages 982–985, New York,
NY, USA, 2015. ACM.

[S6] Thiago Henrique Burgos de Oliveira, Martin Becker, and Elisa Yumi
Nakagawa. Supporting the analysis of bug prevalence in software
product lines with product genealogy. In Proceedings of the 16th
International Software Product Line Conference - Volume 1, SPLC
’12, pages 181–185, New York, NY, USA, 2012. ACM.

[S7] Sven Apel and Dirk Beyer. Feature cohesion in software product
lines: An exploratory study. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 421–430, New
York, NY, USA, 2011. ACM.

[S8] Alexandr Murashkin, MichałAntkiewicz, Derek Rayside, and Krzysztof
Czarnecki. Visualization and exploration of optimal variants in product
line engineering. In Proceedings of the 17th International Software
Product Line Conference, SPLC ’13, pages 111–115, New York, NY,
USA, 2013. ACM.

[S9] Nishanth Thimmegowda and Jörg Kienzle. Visualization algorithms for
feature models in concern-driven software development. In Companion
Proceedings of the 14th International Conference on Modularity,
MODULARITY Companion 2015, pages 39–42, New York, NY, USA,
2015. ACM.

[S10] M. Kaur and P. Kumar. Spotting the phenomenon of bad smells in
mobilemedia product line architecture. In Contemporary Computing
(IC3), 2014 Seventh International Conference on, pages 357–363, Aug
2014.

[S11] R. E. Lopez-Herrejon and A. Egyed. Towards interactive visualization
support for pairwise testing software product lines. In Software
Visualization (VISSOFT), 2013 First IEEE Working Conference on,
pages 1–4, Sept 2013.

[S12] R. Rabiser, D. Dhungana, W. Heider, and P. Grnbacher. Flexibility and
end-user support in model-based product line tools. In Software Engi-
neering and Advanced Applications, 2009. SEAA ’09. 35th Euromicro
Conference on, pages 508–511, Aug 2009.

[S13] F. Loesch and E. Ploedereder. Optimization of variability in software
product lines. In Software Product Line Conference, 2007. SPLC 2007.
11th International, pages 151–162, Sept 2007.

[S14] S. Urli, A. Bergel, M. Blay-Fornarino, P. Collet, and S. Mosser. A
visual support for decomposing complex feature models. In Software
Visualization (VISSOFT), 2015 IEEE 3rd Working Conference on,
pages 76–85, Sept 2015.

[S15] J. Martinez, T. Ziadi, R. Mazo, T. F. Bissyand, J. Klein, and Y. L.
Traon. Feature relations graphs: A visualisation paradigm for feature
constraints in software product lines. In Software Visualization (VIS-
SOFT), 2014 Second IEEE Working Conference on, pages 50–59, Sept
2014.

[S16] G. Botterweck, S. Thiel, D. Nestor, S. b. Abid, and C. Cawley.
Visual tool support for configuring and understanding software product
lines. In Software Product Line Conference, 2008. SPLC ’08. 12th
International, pages 77–86, Sept 2008.

[S17] D. Sellier and M. Mannion. Visualising product line requirement
selection decision inter-dependencies. In Requirements Engineering
Visualization, 2007. REV 2007. Second International Workshop on,
pages 7–7, Oct 2007.

[S18] G. Botterweck, S. Thiel, C. Cawley, D. Nestor, and A. Preuner. Visual
configuration in automotive software product lines. In Computer
Software and Applications, 2008. COMPSAC ’08. 32nd Annual IEEE
International, pages 1070–1075, July 2008.

[S19] S. Duszynski, J. Knodel, and M. Becker. Analyzing the source code of
multiple software variants for reuse potential. In Reverse Engineering
(WCRE), 2011 18th Working Conference on, pages 303–307, Oct 2011.

[S20] C. Pietsch, T. Kehrer, U. Kelter, D. Reuling, and M. Ohrndorf. Sipl – a
delta-based modeling framework for software product line engineering.
In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on, pages 852–857, Nov 2015.

[S21] T. F. L. de Medeiros, E. S. de Almeida, and S. R. de Lemos Meira.
Codescoping: A source code based tool to software product lines
scoping. In Software Engineering and Advanced Applications (SEAA),
2012 38th EUROMICRO Conference on, pages 101–104, Sept 2012.

[S22] S. Duszynski and M. Becker. Recovering variability information
from the source code of similar software products. In Product Line
Approaches in Software Engineering (PLEASE), 2012 3rd International
Workshop on, pages 37–40, June 2012.

[S23] S. Duszynski, J. Knodel, M. Naab, D. Hein, and C. Schitter. Variant
comparison - a technique for visualizing software variants. In Reverse
Engineering, 2008. WCRE ’08. 15th Working Conference on, pages
229–233, Oct 2008.

[S24] Mohsen Asadi, Samaneh Soltani, Dragan Gasevic, Marek Hatala, and
Ebrahim Bagheri. Toward automated feature model configuration with
optimizing non-functional requirements. Information and Software
Technology, 56(9):1144 – 1165, 2014. Special Sections from Asia-
Pacific Software Engineering Conference (APSEC), 2012 and Software
Product Line conference (SPLC), 2012.

[S25] Tom Huysegoms, Monique Snoeck, Guido Dedene, Antoon Goderis,
and Frank Stumpe. Visualizing variability management in require-
ments engineering through formal concept analysis. Procedia Tech-
nology, 9:189 – 199, 2013. {CENTERIS} 2013 - Conference on
{ENTERprise} Information Systems / ProjMAN 2013 - International
Conference on Project MANagement/ {HCIST} 2013 - International
Conference on Health and Social Care Information Systems and
Technologies.

[S26] Andreas Pleuss and Goetz Botterweck. Visualization of variability and
configuration options. STTT, 14(5):497–510, 2012.

[S27] Pablo Trinidad, Antonio Ruiz-Cortés, David Benavides, and S. Segura.
Three-dimensional feature diagrams visualization. In 2nd SPLC Work-
shop on Visualisation in Software Product Line Engineering (ViSPLE),
page 295–302, Limerick, Ireland, Sep 2008. Irish Software Engineering
Research Centre (Lero), Irish Software Engineering Research Centre
(Lero).

[S28] Florian Heidenreich, Ilie Savga, and Christian Wende. On controlled
visualisations in software product line engineering. In Software Product
Lines, 12th International Conference, SPLC 2008, Limerick, Ireland,
September 8-12, 2008, Proceedings. Second Volume (Workshops),
pages 335–341, 2008.

[S29] Christian Kästner, Salvador Trujillo, and Sven Apel. Visualizing
software product line variabilities in source code. In Software Product
Lines, 12th International Conference, SPLC 2008, Limerick, Ireland,
September 8-12, 2008, Proceedings. Second Volume (Workshops),
pages 303–312, 2008.

[S30] André Heuer, Kim Lauenroth, Marco Müller, and Jan-Nils Scheele.
Towards effective visual modeling of complex software product lines.
In Software Product Lines - 14th International Conference, SPLC 2010,
Jeju Island, South Korea, September 13-17, 2010. Workshop Proceed-
ings (Volume 2 : Workshops, Industrial Track, Doctoral Symposium,
Demonstrations and Tools), pages 229–238, 2010.

[S31] K. Wnuk, B. Regnell, and L. Karlsson. What happened to our features?
visualization and understanding of scope change dynamics in a large-
scale industrial setting. In Requirements Engineering Conference, 2009.
RE ’09. 17th IEEE International, pages 89–98, Aug 2009.

[S32] Ciarán Cawley, Goetz Botterweck, Patrick Healy, Saad Bin Abid, and
Steffen Thiel. A 3d visualisation to enhance cognition in software
product line engineering. In George Bebis, Richard Boyle, Bahram
Parvin, Darko Koracin, Yoshinori Kuno, Junxian Wang, Renato Pa-
jarola, Peter Lindstrom, André Hinkenjann, Miguel L. Encarnação,
Cláudio T. Silva, and Daniel Coming, editors, Advances in Visual
Computing: 5th International Symposium, ISVC 2009, Las Vegas, NV,
USA, November 30-December 2, 2009. Proceedings, Part II, pages
857–868, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

35

